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‘\ { Exploding wires with high current pulses have been studied for

“about two decades.] In recent years pulsers capable of delivering on
the order of terrawatts of power for tens of nanoseconds have become
avaﬂab]e.3 These high power pulsers have been used to produce electron
beams4 and to explode wires.5

The Gamble II generator, for example, consists of a Marx generator
which stores 228 kJ, an intermediate storage capacitor, a pulse forming
line and a coaxial impedance transforming line with an output impédance
of 1.5 ohms. It has been used to deliver on the order of 40 kJ to an
exploding tungsten wire.s’6

Although such a device produces tens of Joules of radiation in
the soft X-ray spectrum, it is of interest to examine the possibility
of scaling the technique to higher power levels. The usefulness of a
scaled-up power supply to increase the soft X-ray radiation depends

upon how well the resulting plasma load matches the high power pulser.

Exploding Wire Plasma Load Characteristics

Mosher, et al, have reported that "appropriate" plasma loads
tend to match to the generator driving them.5 This was found to be
true for tungsten wires on the order of 25u diameter, 3 to 4 cm in
length, open circuit power supply voltages, Voo in the range 2-5 MV.

It remains to be seen whether or not the matching will extend to

appreciably higher power levels. D D C
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The power supply, or pulser, is adequately represented by a voltage
source and a resistance for the time period of interest. The exploding
wire and its mounting jig can be represented, insofar as its effect
on the circuit is concerned, by a time varying series R-L impedance. The

circuit is shown in Fig. 1.
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Fig. 1 Equivalent circuit for exploding wire pulser

The simplicity of the circuit in Fig. 1 is highly misleading,
since the innocent looking terms L(t) and R(t) are actually extremely
complicated functions of the exploding wire plasma parameters. The
plasma parameters, in turn, are sensitive to the voltages and currents
in Fig. 1. Because of the complex non-linearities involved, any
theoretical treatment of the problem must involve computer aided numer-
ical solutions for specific cases. To date, no computer program is
available which describes how the exploding wire plasma reacts.

A one-dimensional code has been reported5 which includes the
radiation and electron transport equations, Maxwells equations and the

external circuit. This code is a significant piece of work which




utilizes the Corona equilibrium mode]7 to describe the local high-temp-
erature properties of the plasma. Although the results obtained with
this code agree, in a broad brush sense, with the experiments performed
to date with power levels on the order of a terrawatt, the authors
point out that the effect of run-away electrons has not been included.
And, of course, since it is one-dimensional, it does not include the
effects of the observed m = 0 instabilities.

Apparently, the run-away electrons are created in the low density
regions at the surface of the plasma cylinder. Chapter II of this report
considers the radiation from the time varying, non-Maxwellian velocity
distribution which developes in a plasma in the presence of a strong
electric field. The remainder of Chapter I discusses in a semi quanti-
tative manner the load R(t) and L(t) characteristics, the m = 0 insta-
bility and the scaling up problem.

Kirchhoff's voltage equation for Fig. 1 may be written
e(t) = [Ry + R(t)] i(t) + g [L(£)i(t)] (1)

The inductance is the ratio of the flux within the plasma plus the
flux within the jig but outside the plasma to the current. This
inductance varies with time for two reasons. First, the flux per unit
current within the plasma varies because the current density distri-
bution and the radius of the plasma both vary. Second, the flux out-
side the plasma per unit current varies because the plasma radius !
varies. (It is not clear from the reference cited above that this
second L variation was included in the one-dimensional code, although

it may have been.) It will be seen that the variation due to the second

reason are larger than those due to the first.
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Consider the inductance due to the flux inside a cylindrical plasma

with a 2 mm radius, ro? and 4 cm long, with the current uniformly

distributed,
= -7 = -9
L=1(1/2 x 10 °)(0.04) =2 x 107 hy (2)
= 2 nhy.
Now if the plasma is compressed to 0.05 mm radius, p’ the inductance
becomes
=9 -7 "o
L=22x 10" +2x10 " L &n = (3)
P

"

2 + 2(&n 40) = (2+ 7.38) = 9.38 nhy ¥

If the current density within the plasma is higher near its outer radius
and Tower near its center, the inductance in eq. (1) and the first term
in eq. (2) are even smaller than 2 nhys.

If the diameter of the wire were 25y, the inductance due to the
flux inside a 4 cm cylinder out to a radius of 2 mm is 12.15 nhy. If
the wire explodes and the plasma expands to a 2 mm radius, the inductance
drops from 12.15 nhy to less than 2 nhys if the current density is
larger near the plasma surface. In the process of this expansion, some
plasma energy is removed and fed into the magnetic field. If the plasma
is subsequently compressed to a radius of 0.05 mm, the inductance goes
back up to a value between 7.38 and 9.38 nhy, depending upon the current
distribution. During the compression, some magnetic field energy is
converted into plasma energy.

Of course, there is an additional inductance due to the flux within

the jig, but outside the 2 mm radius, (~50 nhy) which must be added to




the above inductances to obtain the L(t) for eq. (1). Numerical
solutions of eq. (1) with typical R(t) and L(t) values and with e(t)
a step function of 2 MV, and Rg = 12, gives a current which rises to
the order of 1 MA in a few tens of nanoseconds. In some cases the
current does not monotonically increase, but has a slight dip in the
region where dL/dt is positive. However, since the current is higher
during the compression stage than during the expansion stage, a net
energy of the order of a kilojoule can be fed into the plasma.

The effective resistance of the plasma is very important, since
most of the heating is due to the IZR loss within the plasma. Exam}-
nation of the approximate resistance of a 4 cm long, 25y diameter
tungsten wire as a function of temperature is enlightening. The resistiv-
ity of tungsten8 at 300°K is 5.65 u ohm cm and rises to 117.1 at 3655°K.
The wire resistance goes from 4.6 up to 95 ohms as the temperature
increases from room to melting temperature. The effective resistance
of the wire load may not reach a value as high as 95 ohms since some
thermionic electrons will be emitted. Also, no data is available for
the resistance of the tungsten during the time that it is being
vaporized and ionized. Fortunately, the value of resistance during
this time frame does not appear to be too critical insofar as the
high temperature matching problem is concerned. For example, if the
plasma resistance, R(t) in Fig. 1 were 10 ohms, then a large fraction
of the generator voltage would be dropped across R(t). A voltage of
say 500 kV, would produce a power of 25 Gw, which would represent an

energy of 250 joules in 10 ns. Since only a few tens of joules are




needed to vaporize and ionize the tungsten once or twice, a resis-
tance between 10 and 100 ohms would only last for 10 to 20 ns at most.
The resistivity of the ionized plasma above about 105 !

9

can be calculated from equations from Spitzer's book.” In the absence

of a magnetic field the plasma resistiveity is given by
* 3 Z &nA
n=3.8x10 ;—;§7§-ohm - cm, (4)
E
where Z is the ionic charge, YE is a factor given in Table 1, T is the

temperature in °K, and £nA is given in Table 2.

L

Table 1 Factor vg for equation (4)
Ionic Charge 1 2 4 16 o

Yg 0.582 0.683 0.785 0.923 1.000

Table 2 Values of £nAa for equation (4)

Ion density (cm—3)
T ) 10T 150
10° 6 5.79 4.64 3.49
10° n 7.79 "~ 6.64 5.49
10/ 47 9.37 8.22 7.06
108 63  11.52 10.37 9.22

The average values of Z in Table 2 are obtained from Mosher.7

In a strong magnetic field transverse to the electric field,
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the resistivity becomes

n = 1.29 x 104 Z;§$?A ohm - cm

The calculations below indicate that a strong transverse magnetic

(5)

field exists near the plasma surface at high temperatures and currents,

but not in the central regions of the plasma.

The magnetic induction at the surface of a plasma cylinder of

radius r is p_I/2nr, which yields 10 tesla with 0.1 MA at r = 2 mm.
(o]

Since the observed radii are in the range of 0.1 to 1 mm for currents

on the order of 1 MA, there is a strong magnetic field near the surface

of the plasma. The resistivities for a tungsten plasma with ion

densities of 10]8

are given in Table 3.

TABLE 3 Resistivity of Tungsten Plasma in a

Strong magnetic field. (ohm - cm)

T ny = 10'8
°K en”3

10° 1.42 x 1072
10 1.11 x 1073
10’ 1.80 x 107
10 9.36 x 1070

The resistance of the plasma would be given by

PREEER
Rp.c® n &

(6)

and 1020 cm'3 with a strong transverse magnetic field

if the current were uniformly distributed over the plasma cross section.

However, the resistivity is sufficiently low and the time period of the

L




current pulse is sufficiently short, that the skin effect may be appre-

ciable. The skin effect on the plasma resistance can be taken into account
by using the skin depth from Table 4, the ratio of r/s from Table 5 and
the ratio of R/Rpy_c 9iven in Fig. 2.

r/s »

Fig. 2 Skin Effect Factor

The resulting resistances for a tungsten plasma cylinder with

three different radii are plotted in Fig. 3. The curve line widths

18 20

represent variations in ion density form 10~ to 10 cm'3, and

use the resistivity values for strong transverse magnetic fields.

The resistance curve for low temperature is for the tungsten wire




TABLE 4 Skin depth, 6 = V/_
nfu.

for n, = 10]8 o’ n; = ]020 cm™3
5
°K mm mm
10° 0.560 0.465
100 0.168 0.141
10 0.067 0.058
10° 0.015 0.014 ,

TABLE 5 Ratio of radius to skin depth, r/s

for n,; = ]0]8 cm'3 n; = 1020 em™3
T g=21} 65 Joos]2 0.5 |0.05
°K mm mm mm mm mm mm
10° 3.57 0.89 |0.089| 4.3 | 1.08 |0.108
108 11.9 2.97 |0.297(14.2 | 3.55 {0.355
107 29.8 7.46 | 0.746134.5 | 8.62 |0.862
108 13.3 33.3 ]3.33 has |37 last
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before it melts. The dotted extension of this curve to higher temp-
eratures is an estimate. The Towest resistance curve for the 104

to 105 temperature range is for a plasma of 2 mm radius and no magnetic
field. After the plasma is compressed and is in a quasi-equilibrium
condition, the kinetic pressure and the magnetic field pressure are

approximately equal at the plasma surface. That is

N, by 17
T [1 + <Z>]kT = AR (7)
s £ 8 r

Equation (7) is independent of r, hence m = 0 instability can easily
develop. If Ni/Z remains constant, as it does in the one dimensionﬁ]
code, the temperature necessary to balance different currents can be
calculated from eq. (7) and are plotted as the vertical dashed Tines
in Eighi s

The cross-hatched area on Fig. 3 represents the range of R values
which would be obtained if the plasma reached a semi-equilibrium radius
between 0.5 and 0.05 mm with 1 to 1.5 MA through the plasma. Note the
1.5 @ Gamble II impedance is near the center of this range. The corres-

P o #

ponding equilibrium temperature is 7-8 x 10
However, time integrated X-ray photographs experimentally obtained
with hv > 2 keV indicate an m = 0 instability with the plasma dimensions

as indicated in Fig. 4.
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The effect of the m = 0 instability can be semi-quantitavely

understood by considering the plasma shape shown in Fig. 5.

Fig. 5. Hypothetical plasma column shape
If there were no net transport of the ions and electrons in the z-direc-

tion, the ion density in the larger diameter area would be ~ 4 x 1019

and in the small diameter area ~ 4 x ]02] cm-3. But this would result
in a very large density gradient in the z-direction over a distance of
the order of the difference in radii, so no transport of the ions in
the z-direction is hardly possible -- especially near the center of

the column where it will be seen that the magnetic field is low. There-

fore, the ion density in the small diameter region is probably closer

to 4 x 1020 cm-3 than 4 x 102]. This decrease in ion density would
cause an increase in the ion density in the larger diameter region to
e 10]9 cm'3. The change in ion density in the small diameter region

would call for an increase in the term (1 + <Z> )T on the left hand side
of eq. (7) by a factor of 10 to balance the same current and its corres-

ponding magnetic field. Since <Z> at the high temperature will increase

e e e e o
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“25%, the temperature in the small diameter region near the plasma

surface would be ~ 5-6 x 107 °K. Similarly, the higher density

in the larger diameter region would need a temperature of ~ 4 x 106
°K to maintain the semi-equilibrium condition. These two conditions

are marked by points A and B on Fig. 3. If 50% each of the plasma

column length is the small and the large diameter, the total resistance
would be the average of the two values for A and B, or approximately

1 ohm. For the observed shape shown in Fig. 4, the resistance would be
expected to be an average value of the straight line through A and B.

This is reasonably close to experimental observations.

Also, X-radiation spectra measurements on a plasma similar to that
discussed here indicate temperatures on the order of 5 x ]07,°K are ob-
tained.6

For the conditions along the line through A and B the ratio of
the radius to the skin depth § is ~ 3. Therefore, current density
near the surface of the plasma is on the order of 3 times that at the
center of the plasma. This higher current density, together with the
higher resistivity in the strong magnetic region means that the heating
rate near the surface is ~ 10 times that near the center. Since the
radiation is higher for the hotter regions near the surface, a temperature
ratio of less than 10 between the surface and center regions of the
plasma would be expected. Therefore, the ions near the center of the
larger diameter regions are probably less than 106 fil 5

Since the plasma at the surface will diffuse radially into the
magnetic field, there will be a low density region near the surface

of the plasma. Conditions for run-away electrons can occur in this
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region. Those that are produced near the surface of the smaller diameter
regions would move along the z-direction into the low temperature core
regions of the larger diameter plasma. This can account for the strong

L-line emission which has been experimentally observed.

A rough check on the energy required to yield the temperatures
estimated above can be obtained using the specific heats given by Mosher.
This is found to be ~ 25 kJ, or a little over half the 40 kJ that are
deposited in the plasma. The remainder of the energy is radiated both
during the time the temperature distribution is being developed, as well
as the time period after the semi-equilibrium condition is reached.

Since the above model appears to check fairly well with the salient
features found experimentally, it may shed some light on the possibility
of scaling to high power levels.

Fig. 3 is useful to understand how the plasma parameters will change

e

for increased power levels. For a current of 10 MA the vertical dotted
line indicates that the magnetic field and the kinetic pressure will be
in equilibrium at ~ 2 x 108 °K, with no variation in Ni/Z with z. With .
an m = 0 instability the points A' and B' are approximated in the same
manner that A and B were obtained for the lower current. The resistance

of the plasma would then be an average of points along the A'B' line. It
is Tikely that the equilibrium radii will be less than those for the lower
current, but it appears from Fig. 3 that the resistance will still be

~ 0.19. With the current up by a factor of 10 and the resistance

down by a factor of 10, the izR heating would be up by a factor of 10. :

For semi-equilibrium, the radiation must then be up by a factor of 10. 3




!
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The radiation rates are given by7

-
"

1.62 x 10730 1 2> ni2[<z> + L g wend  (8)

and

P = 3.77 x WS T s ni2 < exp[-—irlﬂ > w/cm3 (9)

where, P. is the continuum radiation, PL is the line radiation in the
absence of trapping and the bracket term is equation 8 is given in
reference 7. Since these terms only increase as the ¥/ T, and <Z> increase
only a few per cent, n; must go up slightly to increase the radiation

by a factor of 10. This is consistant with the assumption that the
average radii will be slightly smaller than for the lower current case.
Therefore, it appears that if the current is increased by a factor of

10, the radiation will increase by approximately 10.

However, it is important that the scaled-up current still have a
time scale comparable to that for the lower current case. If the current
rise time is extended, the skin depth will be greater and the plasma
resistance will be even less than ~ 0.1 ohm. If the generator impedance
were reduced by a factor of 10 and the jig inductance is not reduced,
the current would be much Tonger in reaching its value, and the result-
ing increase in temperature and radiation would be less. On the other
hand, if the generator were scaled up in voltage and the generator
resistance and jig inductance held constant, the current rise time
would increase only slightly. Of course, it may be difficult to hold
the jig inductance down with the scaled up generator voltage. Also, a

smaller per centage of the initial power supply energy will be supplied




T

to the plasma. Probably a compromise between a scaled-up voltage and a
scaled down generator impedance would be the optimum to obtain the
higher current. The determination of the optimum generator involves

considerable study which is beyond the scope of this report.




CHAPTER II
PLASMA BREMSSTRAHLUNG CALCULATIONS

In this section we compute the bremsstrahlung spectrum for a high

t temperature plasma in a strong electric field. Our interest is in
obtaining a theoretical framework for comparison with the measured
spectrum of Mosher g}_gl,6 for an exploded-wire discharge. Our approach
is quite restricted and is not an attempt to describe all the very
complex physics of an exploded wire plasma. Basically, we have inte-

grated the time-dependent electron velocity distribution of Kovr‘izhnykh]O

together with the classical bremsstrahlung cross section with the
results of Grant]] for the Gaunt factor. The calculations show a
systematic flattening out of the spectrum with time as the electron
velocity distribution is shifted and distorted from an initial max-
wellian shape by the electric field. This flatness is a feature which
is also seen in the experimental exploded-wire spectrum.

Before describing the bremsstrahlung emitted by plasma electrons
which have a distribution of velocities, we consider the simpler case

of the bremsstrahlung from mono-energetic electrons.

As the electrons encounter positive ions, they scatter and emit
bremsstrahlung over a broad frequency spectrum. Close encounters
result in large scattering angles and the radiation of high frequencies

while more distant encounters give mild deflections and lower frequency

ik At St

radiation. To calculate the radiation one should use a quantum mechan-
ical analysis when the de Broglie wavelength of the electron is compar-

able to the typical impact parameter. This regime is specified by '

«17=
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E > 13.62° eV, (10)

where E is the kinetic energy of the electron (1/2 mvoz) and # the
atomic number of the ion. For smaller values of E a classical analy-

sis can be applied. In the classical case the bremsstrahlung is given

by]],]Z
2 2n 2
4e"b “v
= —2 2 =3 o4 Moy dm D,
3V3e. ¢ 0 =u
A\ Y Vd y VNSNS s o
Vv it
So(Vo) G(w,vy) (11)
where X(w) is the cross section for radiation in the range w to w + dw.
wb 2
It has units of joules - mz/rad./sec. Also My = 7—9— - bo = E8 »
0 4re_mv
0o
and Hu (1) is the Hankel function of the first kind and order Ug-
0

G(w,vo) is the Gaunt factor and contains the dependence of the radiation
on frequency. It is of order unity. There are two restrictions on
this formula: 1) Lige P plasma frequency, in order to be able to neglect
collective motions of the electrons; and 2) ‘hw<<ﬁwmax = 1/2mv02, since
the formula is derived assuming negligible energy is carried away by

: the photon.

Applied to tungsten wires (2 = 74) for comparison with the exploded-
wire discharge, equation10 gives E>76.5 keV for the quantum mechanical

regime. Here we use the Born-Elwert formula,]2’13

n -2mn V.-V )
X(w) = SO(Vi) Z;E ﬁ% {: 21mz.I :} [: Zﬁwf » (12)

2 Ze2

where n = 3;%%57;— s Np = E?E;ﬁv;" » and \ and Vg are the electron




speeds before and after collision, respectively. This formula allows
2
)

2
for the energy carried away by the photon (hw = 1/2mvi - 1/2mvf

The restrictions are w << Ynax and non-relativistic electron energy.
In Fig. 6 we have plotted X(w) for 5 different electron energies,
using the appropriate formula, either equation 1l1or 12, as indicated
in Table 6. It is clear from the figure that the bremsstrahlung spectra
are quite flat and have about the same slope for all of the electron
energies considered. So by merely observing that the spectrum is flat
in a particular experiment one could not learn the electron energy.
One would need to determine the high-frequency cutoff of the spectrum
or perhaps examine the X-ray line emission.
Curves like those in Fig. 6 for target ions other than tungsten
can be generated by using equation 11 for electron energies E < ]3.622
and equation 12for E > 13.622. Since the equations are non-relativistic,
E should be kept below the electron rest mass, mc2 = 511 keV. Koch and
Mmtz]3 discuss what happens if E is greater than this.
A correction that has not been included in the spectra of Fig. 6
is that due to the screening of the ion nucleus by any remaining bound
electrons. We cannot restrict the analysis to only fully ionized species,

since for the tungten exploded-wire plasma this is not the case. The

screening alters the spectra in the range of frequencies below the

frequency W s whev'e]4
e e *_im_ c
Ynax 96 v

If included, it would merely flatten the low-frequency end of the spectrum,

whereas in Fig. 6 the spectrum gradually rises with decreasing frequency.
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Note that in the exploded-wire plasma, the electron number density,6

ng» is perhaps 108 3, so W, = 5.6-10'3s77, and we easily satisfy ?
W >> wp. E
TABLE 6
Data for Figure 6
Electron energy, E ., S Equation
keV sec”! Joule-m’-sec  for Fig.6
5 2.5410"7 1.65-107>9 il !
10 15100 Y g.asa0™ 1
20 3.0:10"°  4.3790°% 1
50 7.5.10"7 1.89-10760 1
100 1.5:-10% . 72,9207 12




We now consider the bremsstrahlung emitted by a plasma in which

the electrons have a maxwellian velocity distribution. The bremsstrahlung
spectrum is calculated by integrating equation11 over the electron

velocities, and the result is

e 2286 1 " “hw/kT _

Xw.T) = o mc? o )3 kT G(w,T). (13)

0
Here T is the temperature and G(w,T) is the maxwell-averaged Gaunt

factor and is given by Karzas and Latter-.]5 As was the case for G(w,vo),
G(w,T) is of order unity. Thus X(w,T) depends on w mainly through
the exponential factor and so has a much steeper variation than in

the mono-energetic case (Fig.6 ). Equation13 should be vah'd]2 up to

1]

W = 13,615, orTw = 74 ke¥ for 2 = 74.

Applying equationl3 to the tungsten exploded-wire plasma, we set

Z =74, kT = 4.4 keV and 2.9 keV and obtain the spectra plotted in

Fig. 7 . For the frequency range plotted here G remains constant at
1.2,.50 the spectra are purely exponential. They are the same as the
straight lines sketched on Mosher's measured spectrum.6

The objective now is to discuss the flat portion of Mosher's spec-
trum which lies just to the right of the steep thermal portion, above
about 8 keV. It is evidently due to a stream of fairly mono-energetic
electrons (which we know yield flat spectra as in Fig. 6), and these
electrons could be quite energetic since the discharge voltage is nearly

10

1 MV. We make use of the results of Kovrizhnykh ~ who gives an electron

distribution function which is time dependent and applies in the case of

a strong electric field. Here we assume a maxwellian distribution at
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Figure 7. Thermal bremsstrahlung spectra for
2.9 and 4.4 keV temperatures




time t = 0,

£(V, t) = f. (v, Vo),
£ < B max''r’> “Z

when the electric field is switched on. If collisions are neglected,

solution of the Boltzmann equation for t > 0 gives]0

f(V, t) = f (vovg - 25 t), (14)

for an electric field, £, in the -Z direction. So the maxwellian
shape moves in tact out along the vy axis at a rate e¢/m = y. The
electrons thus accelerate toward the anode forming a hot beam, and
the bremsstrahlung emitted as they encounter ions will be similar
(although not identical) to a strictly mono-energetic or cold beam
(Fig. 6).

The next step is to include collisions. If the collisions are

assumed to have only a small effect, then

oS

f(Va t) = f (.Vr.a VZ - Yt){ ] ek

max

& | 2 2
'é‘k— %\7 (VZ = Yt)[vz - yt)" 4+ L ]

2
1+ /2 vy - vt)° - v, 7]
+ yt 7

- 8/2 {vg - Yt)[vr2 + (vg - vt)%1'/2

2
Bv.. - ¥ N

-(1- =)

)11,
(15)

2 251
[v.” + (v; - vt)7] /2 4 vy = vt
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2 2
X + o
where fmax(vr’ Vg - yt) = “e(gF)3/2 e 1/28[vr (VZ vt) ],

12 n]-?:Z/T0 V/cm with TO in electron volts.

B = m/kT, and g, =210
This is Kovrizhnykh's resu]tlo modified by us to apply for any atomic
number (Z) ion and any degree of ionization. Also, we have let M/m + .
The function f(V, t) given by equation 15 is actually not too different
from that in equation 14. Kovrizhnykh describes the differences.

The region of validity of equation 15 depends on several plasma para-
meters according to the condition

2/7 e M Et

m3/2(kT)1/2
Unfortunately, this shows that n; must be s 10]4 cm'3 when we take,

£ >> g £n(

for the exploded wire, ¢ = 105V/cm, 274, T~ dkel, and £ = 10710

sec. (t is discussed below.) Thus n; is restricted to values less

18e3 reported by Mosher and so probably corresponds best

max
than the 10

to the region near the boundary of his plasma.
We have calculated the bremsstrahlung spectrum corresponding to

the distribution function of equation 15 . The spectrum is given by

S(w,t) = / £V, thn; v % (v)G(w, v)d3v. (16)

S(w, t) has units of watts/(m3 - rad./sec).
A sizable amount of algebra is needed to put equationl6 into a form
suitable for integration by computer. See the Appendix for details.

The integrations have been done on an IBM 370 using Gauss-Laguerre

quadrature as contained in the library routine DQG 32. The quantity
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11

So(v)G(w,v) is from equation 11. Grant ' has calculated values for

G(w,v), and we have approximated these with the continuous function

/3 2
— fn(5—55=), for y < 0.008
G(W,V) S ™ ].78y e s
en(2.718 + 0.7716 y"9-°899) " ¢or v 5> 0.008
2
where y = z;ﬁ-— Ze3
o my

The distribution function and the spectrum depend on the time,
t, so that one must determine a reasonable range for t. Taking a char-
acteristic length for the exploded-wire plasma as £ = 1 cm, we obtain
a maximum time, tmax’ from

2

=172 (gg_) L

10 g

Thus the range of t is 0 < t < tmax ol |3 ec. for ¢ = 105 V/cm.

When t = t__ , the electron energy, e, is about 100 keV.

max
Fig. 8 shows f(c,t) as & function of vz with e ™ 0 for t = 10-]3,
10']2, and 5-10']]sec. We have taken = 105V/cm, %z =74,

14 7

To= 4keV, n; =10 cm'3, and n, = 50n," Notice how f(V,t) changes

under the action of the electric field. It is shifted to the right

and slightly distorted near its peak.

12 11 1 10

Fig. 9 shows S(w,t) for t = 107 , and 10" '“sec.

14 and also 10]2. We see S{w,t) flatten out as t increases. {

» 10 "'y 510

for ni = 10

Some wiggles appear in the spectrum for the larger fy = evidently due |
to increased collisions. Mosher's measured (time-averaged) spectrum,

with both the steep and the flat portions, might be imagined to arise ]
from a distribution near the plasma boundary like the one we have

calculated and a maxwellian distribution deeper inside where n; is

higher. :
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Figure 9. Bremsstrahlung spectra for time-varying electron velocity distributions
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Of course one could plot f(V,t) and S(w,t) for other values of
the plasma parameters (lower T, for example). We have shown only the
plots of interest for the exploded-wire plasma.

Finally, we note that for the distribution function we have used,
(equation 15) most of the electrons may be classed as "runaway."

The usual condition for electron runaway is that the energy gain of

the electron in the electric field in one mean free path is larger than

its thermal energy. This gives5
2

2 n.
i
£ = V/cm
runaway i 12
2-4-10 T0
with Ty in eV. And for ng = 1014 cm'3, Erunaway = 57 V/cm, so that
with £ = 10°V/cn we have £ >> g U By = 10'8 though,
£=10° < ¢

runaway') h




APPENDIX
Integrations carried out by computer

On letting vz = vcose, the electron distribution function given

by equation (15) can be written as follows:

f(V,t) =
ne(B/ZTT)3/2 e‘B(a -b COS@) [] + %“Yll:_ (-I /e sz)

SN e
+ %Eg-cos o + (yt - vcose) Ya - b cose

2 2
<) e T _éx_gpi_“e) %-zn v_+ vcose
v a - bcose + vcoso - At

(A-1)

2 2

a=v2+y2t% b=2vt and ¢ = 4nean 22p/m. 10

The spectral intensity is given by

S (W) = [ S(w,v) f(¥,t) dv,
where
S(w,v) =S G(w,v)
vzdv Sineded¢
2 6

2 i L
(4neo)3 3/ 3 mzvc3

G(w,v) and S do not depend on & and ¢. On carrying out the angular
integrations we get
I(v) = [2™ [ £(V,t) sinedads
0 0

=30




=g

2 2
2nne(8/2n)3/2 [A(v)e_(Bq Ve, B(v)e'(Bp )/2

2
2 -(8v©)/2
- 2
et e s o AR
P p
2 2
. e‘(B,Y )/2 _y4e-(By )/2

dy + F(v) gq ST av]

(A-2)

2

qy

Bk} (y + pl(y + q)
p

where

P=v-yt,qg=v+yt, o= 8vt,

1 € 1 1 3
Alv) = - — - 5= (5 + + )
a 28¢ V2 2Y2t2 2VYt
& X (l_ | SR ) 2n (1 + vt )
EBYt v Yt BV‘thZ v
T SV L) 1 3
B(v) = 4+ sec (2 + il T )

C(v) = (-fré) 1 EeG

2 1 2
() [&=-v+—= (a - =+ ]
£ "BV 4vY2t2 B S?

D(v)

E(v) = () [—7—2—2:5 5" ]

L0

F(v) = e/8svy"t (A-3)

For numerical integration it is necessary to modify the variable
of integration y in the last four terms of I as follows:

Let /B/2 y = X, dy = v2/B dx




Also define

q/B/Z = XU and pvg/? =

Then ,
2
1 =2mn(8/2m) /2 [A(v)e™ (B7)/2 4 gy)em(897)/2

2
2 X
C(v) (XU -X XU e dX
+ L) XU X" x4 vy /ETZ | 0
o X+ XL)(X ¥ XU)
B/2 x XL
2 2
xZe~X dx L F) oo x%e Xy

(X + XL)(X + XU)

¢ E) (0
B2

)37 fL (X + XO)(X ¥ X0)

The spectral intensity is given by

S(w) = [7'S G(w,v) I(v) dv

= fw
Let us change the variable of integration v to Y as follows:
Y = —mv_z - hw ;.
27kt
Then
dy = T vdv
and
r??"‘“‘"“??""—
(Y + &)
Then
Sw) = Ay 7 6lw,v(N] I0v(1)Ie™ ay (A-4)
)
where J

2
n.2 2
Ay = 2an (/2032 161 TT eC )30 b/ kT

3/3° m3c3 brey




Before the right hand side of S(w) can be integrated numerically it

is necessary to express the gaunt factor g[w,v(Y)] in an analytical
form. We have found that the following expression for g[w,v(Y)]

agrees very closely with Grant's results:

B (T_%r ) for y <-008
g(w,v) = ;
£n[2.7182818 + .771588 y - 280864, for y > .008
where
W Zez
y =y B8 (A-5)
o mv3

Y

Because of the presence of the factor e ' in egn. (4) the integral

can be evaluated numerically by using the fast and accurate Gauss-

Laguerre guadrature scheme.
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